Head pose Estimation Using Convolutional Neural Networks

نویسنده

  • Xingyu Liu
چکیده

Head pose estimation is a fundamental problem in computer vision. Several methods has been proposed to solve this problem. Most existing methods use traditional computer vision methods and existing method of using neural networks works on depth bitmaps. In this project, we explore using convolutional neural networks (CNNs) that take RGB image as input to estimate the head pose. We use regression as the estimation approach. We explored the effect of different regularization strength and face alignment in our estimation. By using a CNN whose architecture is similar to VGG-nagadomi to train on IHDB head pose dataset, we can get a test regression euclidean loss of less than 0.0113, equivalent to average error of 20◦ of spherical distance, 4 times smaller than not using face alignment. We also proved that proper regularization strength could prevent overfitting thus reduce test loss.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Head Pose Estimation Using Convolutional Neural Networks

Detection and estimation of head pose is fundamental problem in many applications such as automatic face recognition, intelligent surveillance, and perceptual human-computer interface and in an application like driving, the pose of the driver is used to estimate his gaze and alertness, where faces in the images are non-frontal with various poses. In this work head pose of the person is used to ...

متن کامل

NosePose: a competitive, landmark-free methodology for head pose estimation in the wild

We perform head pose estimation solely based on the nose region as input, extracted from 2D images in unconstrained environments. Such information is useful for many face analysis applications, such as recognition, reconstruction, alignment, tracking and expression recognition. Using the nose region has advantages over using the whole face; not only it is less likely to be occluded by acesssori...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

Head pose estimation in the wild using Convolutional Neural Networks and adaptive gradient methods

Head pose estimation is an old problem that is recently receiving new attention because of possible applications in human-robot interaction, augmented reality and driving assistance. However, most of the existing work has been tested in controlled environments and is not robust enough for real-world applications. In order to handle these limitations we propose an approach based on Convolutional...

متن کامل

Real-time Human Pose Estimation with Convolutional Neural Networks

In this project, we seek to develop an accurate and efficient methodology to address the challenge of real-time head pose estimation. Though there have been previous attempts to apply convolutional neural networks to this fundamentally subtle task, to the best of our knowledge, there exist no initiatives that have directly utilized Convolutional Neural Networks (CNNs) in tandem with these metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016